
©SEAL SQ – 2022 – All rights reserved

Whitepaper

Seal SQ
Secure IoT Device to Cloud
solution

©SEAL SQ – 2022 – All rights reserved Page 2

Contents

About SEAL SQ 4

Introduction 5

Threats and vulnerabilities of IoT 6

Seal SQ secure device-to-cloud solution 7

Key components 7

Public Key Cryptography 7

Root of Trust (Certificate Authority) 8

Digital Identity 8

CMS (Certificate Management System) 9

VaultIC Secure Elements 10

Building a secure connection to an IoT Cloud 11

Secure Provisioning of the Secure Element 11

Secure Cloud connection 12

Solution architecture reference 16

Conclusion and key takeaways 18

Acronyms and abbreviations 19

References 20

Disclaimer 21

Contacts 22

©SEAL SQ – 2022 – All rights reserved Page 3

Seal SQ is a pure play cybersecurity
company, with over 20 years of experience
in providing digital trust and cryptographic
protection. Seal SQ delivers secure
semiconductors, digital certificates, digital
IDs, as well as SaaS platforms for proof-
of-provenance, lifecycle management
and blockchain-driven traceability. Seal
SQ customers are typically IoT vendors
servicing smart buildings, smart cities,
smart agriculture, drones, health care
monitoring, logistics and Industry 4.0. Seal
SQ has even been able to successfully

extend its Trust model to non-connected
objects. Such objects connect through
NFC or a plug when needed, and include
luxury goods, health care consumables,
appliance accessories, cold crypto wallets,
and pieces of art.

Seal SQ’s certificate Authorities, Security
Brokers, management systems and
tamper resistant secure microcontrollers
are regularly audited and accredited with
highest grade WebTrust, Common Criteria
and FIPS certifications.

About SEAL SQ

©SEAL SQ – 2022 – All rights reserved Page 4

Introduction

In 2018, the global market for the Internet
of Things (IoT) reached $130bn. It is
projected to reach $318bn by 2023 at a
compound annual growth rate (CAGR) of
20%. According to IHS Markit, more than 75
billion IoT devices will be online by 2025.
Yet, for all its promise, IoT technology is not
without its difficulties and challenges. Early
adopters of IoT technologies encountered
significant barriers to adoption.
Security tops the list of major concerns,
holding back 59% of those professionals

from proceeding. According to a study
by the Ponemon Institute, 63% of CISO’s
believe that participation in IoT will increase
cybersecurity risks in the future, and that
over 80% of professionals predict that their
organization will experience a catastrophic
data breach caused by an unsecured IoT
device. In this paper we address a complex
fundamental component of securing IoT:
how to give devices and services secure
identities so they can interact securely.

©SEAL SQ – 2022 – All rights reserved Page 5

Threats and vulnerabilities of IoT

Security for the IoT is increasingly being
recognized as a critical requirement; not
only due to the logical and physical security
aspects that are so closely entwined with
digital security, but also because of the
need to effectively manage deployments.
This requires identification for the purposes
of authentication, attestation, and access
control, at a minimum.
For most IoT deployments, a trusted
ecosystem of authorized devices and
authorized services is the recommended
approach. In a trusted ecosystem

unauthorized devices or services are not
allowed to interact with authorized devices
or services. This prevents illicit access
to the critical services and data of an IoT
device.

Establishing a trusted ecosystem is not
possible without mutual authentication.
This allows two entities to prove to each
other that they are authorized members of a
particular trusted ecosystem. The standard
practice for mutual authentication is public
key cryptography.

©SEAL SQ – 2022 – All rights reserved Page 6

Seal SQ secure device-to-cloud solution

Public Key Cryptography

Key components

A Public Key Infrastructure (PKI) is
commonly defined as “a set of roles,
policies, and procedures needed to create,
manage, distribute, use, store, and revoke
digital certificates”, but the understanding
of this definition requires us to explain some
base concepts. PKI uses cryptographic
techniques based on a pair of keys, with a
unique mathematical relationship. In our
case this relationship is based on Elliptic
Curves: Elliptic Curve Cryptography or ECC.
One key is private and kept secret, one key
is public and can be disclosed to everybody.
ECC works in such a way that a message
signed (encrypted) with a private key can
only be verified with the related public key.
This technology is the foundation to build
the four pillars of transaction security:
confidentiality, authentication, integrity,
and non-repudiation.

A subscriber or “end entity” (person,
application or object) will have a key pair, a
secret private key and a public key, usually
presented in the form of a Digital Certificate.

In PKI the assurance on the identity of the
owner of a private key is achieved by using
an X.509 Digital Certificate that contains
not only the public key but also the identity
of the entity that has the corresponding
private key, together with an attestation
issued by an entity that verified the identity
of the person or object according to a series
of security practices. The entity that makes
the attestation is known as the Certification
Authority (CA) and the attestation itself has
the form of a digital signature, generated
with the private key of the CA. This implies
one of the first concepts around trust:
we can trust a Digital Certificate of an
entity (person, application or object) only
if we trust the CA that signed the Digital
Certificate, or said differently, if we can
verify the signature of the signing CA with
its public key in which we trust.

It goes beyond the scope of this document
to describe the various techniques to build
trust in the signing CA, but one of them is to
register the public key of the signing CA in
a protected environment. This technique is
often used in public cloud platforms such
as AWS.

©SEAL SQ – 2022 – All rights reserved Page 7

Root of Trust (Certificate Authority)

Another technique is to sign the certificate
of the Signing CA with a publicly trusted
Root of Trust. OISTE/Seal SQ’s Swiss
based cryptographic Root of Trust (“RoT”)
provides such publicly trusted secure
authentication and identification, in both
physical and virtual environments, for the
Internet of Things, Brand Protection and
NFT. The Seal SQ RoT serves as a common
trust anchor to ensure the integrity of online
transactions among objects and between
objects and people.

Digital Identity

The essential component of a secure
device-to-cloud-connection is the device’s
digital identity. This must be unique per
device, hard to fake and hard to steal.

Once one can rely on these three
characteristics of the digital identity, one

can establish a complete trust chain for
device authenticity and integrity, security
of communication, and finally data
trustworthiness.

What is needed to obtain a trusted digital
identity of a device? First of all, a secure
means to generate it, a secure means to
use it in the device and, most and for all, a
secure process to provision it in the device.

A digital identity consists of the
combination of a unique serial number, or
object identifier, linked to a secret private
key and a digital certificate containing the
related trusted public key.

A Certificate Authority is a well-protected
environment where the link between object
identifier and public key is asserted and
certified by means of digital signature of
this link. This is called a digital certificate.

©SEAL SQ – 2022 – All rights reserved Page 8

The certification can be one-shot, a device
receives a certificate that will be used for
its authentication throughout its entire
lifetime, or it can be dynamic in the sense
that the certificate can be issued, revoked
or renewed during the life of the device,
depending on the needs of the network it
is part of. For this purpose, a managed PKI
system, or CMS (Certificate Management
System) can be used, giving a system
administrator the control over the lifecycle
of the devices and their digital identities.

CMS (Certificate Management System)

The biggest barrier to deploying IoT
projects is providing robust security that
can be scaled for a large number of devices.
The core security challenges are device
personalization and lifecycle management.
IoT devices need to be provisioned with
unique, trusted identities that can interact
in complex ecosystems of industrial and
consumer IoT.

Seal SQ managed PKI (mPKI) service for
IoT is called INeS CMS. It provides device
personalization at the massive scale.
Whether you want to deliver credentials on
the factory floor or from an online cloud
enabled service, Seal SQ makes scalable
device personalization easy.

INeS CMS provides below key features:

• Certificate Management – It supports
the definition of certificate templates, the
generation of standalone certificates or
batch certificates, and the management
of the issued certificates (i.e. monitor,
revoke, re-key).

• CA management – Users can
configure the issuing CA for a specific
organization.

• Multi-tenancy – It supports Role Based
Access Control (RBAC) for the users of
CMS and organization management.

• Log auditing – It logs each operation in
CMS (i.e. user login, certificate request,
certificate generation, etc).

• Public cloud integration – It integrates
with public cloud services like AWS
IoT Core and Azure DPS/IoT hub. IoT
devices can easily on-board to a public
cloud by using the certificates issued by
INeS CMS for device attestation.

• APIs support – RESTful APIs and
technical documents are available for
automating the certificate enrolment
process and managing the life-cycle of
devices.

• Client library support – Client library and
sample code are supported in different
programming languages.

©SEAL SQ – 2022 – All rights reserved Page 9

To store assets, like device private keys and
associated digital certificates and possibly
critical application specific data, Seal
SQ recommends Secure Elements (SE),
such as VaultIC408 or VaultIC292. These
Secure Elements are designed specifically
for the purpose of performing their pre-
programmed security routines. These
cryptographic services and functions,
executed in a physically hardened
environment, a tamper resistant chip,
include low-level cryptographic methods
and algorithms needed for authentication
and data encryption/decryption as well as
secure storage of essential data items.

The VaultIC family of products embeds
cryptographic tool boxes for Authentication,
Confidentiality and Integrity executed
in a secure environment. The tool box
proposes a variety of standard and NIST
recommended algorithms and key lengths
(e.g. ECC, RSA, ECDSA, AES, SHA...).
VaultIC embeds on-chip tamper resistant
data storage capabilities (NVM) for keys,
certificates and customer data. VaultIC
also features a True Random Number
Generator, compliant to SP800-90B [NIST]
to guarantee the entropy needed for high-
level cryptographic services.

Seal SQ’s VaultIC Secure Elements, provide
multiple advantages when compared
with software-based security, or security
executed in specific trusted zones on the

host MCU, including:

• Crypto keys and other security materials
are stored under control of secure
hardware, beyond the reach of any
software attack on the host system, its
RAM cache, or the VaultIC itself;

• Protection against physical attacks,
also referred to as tamper-resistance,
using various techniques like voltage,
temperature or frequency sensors, bus
encryption, shielding, memory access
protection, countermeasures against
power analysis, light detectors …. The
VaultIC chips are able to protect their
sensitive information up to a level that
is certified by independent laboratories,
according to Common Criteria and
FIPS.

• Digital signature and verification like
ECDSA are performed within the Secure
Element.

• True Random Number Generation is
performed within the Secure Element
hardware, delivering true randomness
that is vital for high quality generation
of encryption keys – software alone
is limited to Pseudo Random Number
Generation, weakening encryption and
security.

VaultIC408 is certified by the US FIPS 140-
3 Level 3 standard [FIPS] and Common
Criteria EAL 5+ [CC].

VaultIC Secure Elements

©SEAL SQ – 2022 – All rights reserved Page 10

The digital identity of a device, which is
considered unique and authentic, should be
generated and stored on a SE in a secure,
controlled environment. This avoids the
processing of this sensitive data in a
device manufacturer’s production chain
and possible leakage of this sensitive
information to a production of counterfeit
devices. Because the digital ID is stored in
the tamper resistant chip before leaving

the chip manufacturer’s secure production
plant, the task of an OEM is merely to
connect the chip on a board, amongst all
other components. The simple fact that
the secure element is tamper resistant is
a guarantee that no secret data can leak
during manufacturing and that the digital
identity truly is unique.

This is depicted in the diagram below.

Secure Provisioning of the Secure Element

Building a secure connection to an IoT Cloud

1. A Root Certificate Authority and an Issuing Certificate Authority (ICA) are setup by the
 Device Manufacturer

Figure 2: pre-provisioning of Digital Identity in Secure Element’s production process

©SEAL SQ – 2022 – All rights reserved Page 11

2. The device Manufacturer defines
information such as device and certificate
type and template for the devices to
produce. The CMS can be asked to generate
a batch of device private
keys and certificates, signed by the ICA.

3. The device maker orders the
Secure Element, and defines the memory
profile and information that needs to be
stored in the chip.

4. Seal SQ production retrieves from
INeS the generated keys and certificates
and

5. Stores them as required in the
chips, in a Common Criteria certified
secure production site.

6. At reception of the personalized
chips, the device manufacturer or
Contract Manufacturer only needs to
build the physical device that will from
the start possess an identity and can be
authenticated for further operation.

Secure Cloud connection

In the IoT device, our SE (VaultIC408 in this
case) is an accompanying chip that works
along with the host MCU and stores the
private key and device certificate for device
authentication.

Below is the figure that illustrates the
general workflow of how an IoT device with
an SE establishes a secure connection to
the cloud to start exchanging information.

In general, the server and device will
negotiate the cipher suite which contains
TLS version, key exchange algorithm
(i.e. ECDH, ECDHE, RSA), authentication
algorithm (i.e. ECDSA, RSA), data encryption
algorithm (i.e. AES_128_GCM) and
message authentication code algorithm
(i.e. SHA256) during the TLS handshake.
Thus, the workflow for TLS establishment
could be slightly different, depending on the
agreement between client and server. The
figure takes TLS1.2 ECDSA authentication
algorithm and the ECDHE (Elliptic curve
Diffie-Hellman ephemeral) key exchange
algorithm as an example to illustrate what
needs to be done in the VaultIC408 and
how the mutual TLS handshake works for
establishing a secure connection to the
cloud application.

©SEAL SQ – 2022 – All rights reserved Page 12

Figure 3: Establishing a secure connection to a cloud using TLS 1.2

©SEAL SQ – 2022 – All rights reserved Page 13

1. Before the TLS client (MCU)
issues the TLS connection request to the
TLS server (Cloud), it asks the SE for a
client random number by a GET RANDOM
command.

2. The TLS client takes the random
number and initiates the handshake by
sending a Hello message to the TLS server.
The message includes which TLS version,
session ID, cipher suites supported by the
client and a string of random bytes known
as the “client random” which was previously
generated by the SE.

3. The TLS server responds with
the server hello message with the “server
random” which is a random string of bytes
generated by the server, followed by the
server’s certificate.

4. The TLS client issues the request
VERIFY SIGNATURE command to SE
in order to verify the authenticity of the
certificate received from the TLS server
with the public key of the issuing certificate
authority that signed the server certificate.
(Best practice is to store this ICA public
key in the SE during personalization of
the device, as to protect it from being
modified).It confirms that the server is who
it says it is, and allows the TLS client to
keep interacting with the authentic the TLS
server.

5. The TLS server takes the client and
server randoms, DH domain parameters
as well as server’s ephemeral key pair that
will be used to compute a shared secret.
The TLS server signs them with its private
key and sends the sever key exchange
message with ephemeral public key and
the signature to The TLS client.

6. The TLS server issues the
certificate request and concludes with a
“Server Hello Done” message to the TLS
client.

7. The TLS client uses the public key
from server’s certificate to verity the digital
signature of the Server Key Exchange
message and checks if the server is the
rightful owner of the key pair by VERIFY
SIGNATURE command. If yes, it will start
requesting the required keys to SE.

8. The TLS client issues the requests
to SE for generating client ephemeral public
key and establishing key material in order to
share it with The TLS server for calculating
the shared secret.

9. The TLS client requests the SE
to compute the shared secret, which is
calculated from server ephemeral public
key and client ephemeral private key in
the SE. Then, The TLS client reads client
ephemeral public key and client certificate
by READ KEY and READ FILE commands.

©SEAL SQ – 2022 – All rights reserved Page 14

10. The TLS client sends the client
certificate, issuing CA certificate chain
and client ephemeral public key to the TLS
server so that the TLS server can verify
the signature of client certificate by the
public key of issuing CA, and also calculate
the shared secret from its own server
ephemeral private key and the client’s
ephemeral public key in the next steps.

11. The TLS client issues the request
to SE for generating the digital signature by
using its private key so that the TLS server
can verify if the TLS client is the authentic
owner of the device certificate.

12. The TLS server verifies the
signature by using public key from the
client certificate.

13. Once the signature is verified, both
sides derive the session keys from shared
secret and the generated session keys will
be used to encrypt/decrypt data.

14. The TLS client sends the Client
Change Cipher Spec, which is used to
change the encryption to the TLS server,
at the point when the TLS client is ready to

switch to a secure, encrypted connection.
Any data sent by the client from now on
will be encrypted by using the symmetric
session key.

15. The TLS client sends Client
Handshake Finished to the TLS server.
It is the last message of the handshake
process from the TLS client signifies that
the handshake is finished and it’s also
the first encrypted message of the secure
connection.

16. The TLS server sends Server
Change Cipher Spec, meaning the TLS
server is also ready to switch to an
encrypted environment; any data sent by
the TLS server from now on will also be
encrypted by using the symmetric session
key.

17. The TLS server sends the Server
Handshake Finished message as the
last message of the handshake process
from the TLS server signifying that the
handshake is finished.

18. Then, the secure session is
established and all the data exchanges
between the TLS client and server will be
encrypted.

©SEAL SQ – 2022 – All rights reserved Page 15

Seal SQ is the only European company who
can offer all the key components for the
IoT from Certificate Authority (CA), Digital
Identity, Certificate Management Solution
(CMS), Secure Element (SE), Secure Identity
Provisioning and Public Cloud Services
Integration.

Below figure illustrates an example
workflow of Seal SQ device-to-cloud
solution for IoT, in a zero-touch provisioning
architecture.

Please be aware that your application might
require another bespoke architecture,
depending on, e.g.:

• How do you define the digital identity to
fit your IoT application;

• Do you prefer to pre-provision or post-
provision the digital identity in the IoT
device;

• Do you use an SE and what needs to be
stored in it.

Seal SQ would provide the best solution
architecture that could be applied to your
IoT application and you can focus on the
development in your domain.

Check the diagram below:

Solution architecture reference

Figure 4: Zero-Touch device Provisioning example

©SEAL SQ – 2022 – All rights reserved Page 16

1. Pre-configure the CA/ICA (issuing
CA) for your organization on the INeS
platform.

2. Pre-configure the public cloud
connection in the INeS platform and
register
 the issuing CA through INeS CMS
web portal to e.g. Azure DPS/IoT hub or
AWS IoT core

3. The INeS client on the device
generates the CSR which is signed by the
pre-loaded private key that stored in the
secure element.

4. The INeS agent requests for a
device certificate from INeS by accessing
the REST APIs and attaching the CSR.

5. Store the returned x509 device
certificate in a specific directory of the IoT
device.

6. The Device agent establishes a
secure TLS connection to public clouds
(AWS IoT Core/Azure DPS IoT hub) and on-
boards the IoT device (the exact mechanism
to on-board on these public clouds is out of
scope of this document).

7. Once the IoT device is
authenticated and on-boarded to the cloud,
it starts publishing telemetry data to the
messaging broker and the workload can be
further analysed and processed by your IoT
application.

©SEAL SQ – 2022 – All rights reserved Page 17

Conclusion and key takeaways

IoT is disruptive technology that is growing
rapidly. However, without proper security, it
will never reach its full potential.

Device identity management is a key
consideration to secure IoT devices—
where the process must be protected
for both authenticating devices and
authorizing access based on permissions.
One of the best ways to provision secure
device identities is through a PKI.

Secure hardware provides the ideal trust
anchor from which secure software and
services can be leveraged:

1. A typical design pattern for OEMs
wanting to build-in hardware security
has been to solder a Secure Element
(SE) chip alongside the primary System
on Chip (SoC). Often these SE chips are
delivered with the necessary secret keys
and certificates so that they can be built
into connected devices and on-boarded
to popular cloud service providers such

as AWS or Microsoft Azure. This pre-
provisioning of keys simplifies the device
manufacturer’s production process and
logistics considerably.

2. Most SEs also benefit from
advanced protection from physical
attack, which is an attractive capability to
Cloud Service Providers that care about
protecting their secret keys and the integrity
of certificate data.

3. For Linux-based systems that
use applications processor-based chips
without integrated non-volatile memory,
the SE also becomes a valuable place to
store security variables between power
cycles, e.g. lifecycle status or anti-rollback
counters.

Using the Seal SQ PKI and Secure Elements
provides a comprehensive, cost-
effective, and scalable solution to multiple
problems that the IoT industry is facing.

©SEAL SQ – 2022 – All rights reserved Page 18

Acronyms and abbreviations

AES Advanced Encryption Standard

CA Certificate Authority, entity that signs digital certificates

CC Common Criteria

CISO Chief Information Security Officer

CMS Certificate Management System

CSR Certificate Signing Request

DDOS Distributed Denial of Service

ECC Elliptic Curve Cryptography, a public Key cryptography algorithm

ECDH Elliptic-curve Diffie–Hellman

ECDHe Elliptic-curve Diffie–Hellman ephemeral

ECDSA Elliptic Curve Digital Signature Algorithm

FIPS Federal Information Processing Standard

ICA Issuing Certificate Authority

IoT Internet of Things

JTAG Joint Test Action Group: a JTAG interface can be used to access debug func-
tions of a microcontroller and to access memory and registers

MCU Micro Controller Unit

NIST National Institute of Standards and Technology

OISTE Organization for the Security of Electronic Transactions https://oiste.org/

PKCS#11 Public-Key Cryptographic Standards

PKI Public Key Infrastructure https://en.wikipedia.org/wiki/Public_key_infrastruc-
ture

RBAC Role Based Access Control

REST Representational State Transfer

ROT Root of Trust. The foundation for cryptography.

RSA Rivest Shamir Adleman, a public Key cryptography algorithm

SaaS Software as a Service

SHA Secure Hash Algorithm

SHA Secure Sockets Layer. Secure transportation protocol replaced by TLS

TLS Transport Layer Security. A secure transportation protocol

©SEAL SQ – 2022 – All rights reserved Page 19

References

[NIST] NIST SP 800-90B: Recommendation for the Entropy Sources Used for Random Bit
Generation, January 2018

[FIPS] NIST FIPS 140-3: Security Requirements for Cryptographic Modules, March 2019
[CC] CC:2022 Release 1

[VIC408] Seal SQ: VAULTIC408 Summary Datasheet, March 2022

[AWS] Device Manufacturing and Provisioning with X.509 Certificates in AWS IoT Core

©SEAL SQ – 2022 – All rights reserved Page 20

Disclaimer

Information in this document is not intended to be legally binding. Seal SQ products are sold
subject to Seal SQ Terms and Conditions of Sale or the provisions of any agreements entered
into and executed by Seal SQ and the customer.

The products identified and/or described herein may be protected by one or more of the
patents and/or patent applications listed in related datasheets, such document being available
on request under specific conditions. Additional patents or patent applications may also apply
depending on geographic regions.

For more information, visit www.Seal SQ.com

© Seal SQ 2019. All Rights Reserved. Seal SQ ®, Seal SQ logo and combinations thereof, and
others are registered trademarks or tradenames of Seal SQ or its subsidiaries. Other terms and
product names may be trademarks of others.

Release date: December 2022

©SEAL SQ – 2022 – All rights reserved Page 21

Contacts

Seal SQ SA
SEAL (BVI) Corp. Craigmuir Chambers,
Road Town, Tortola, VG 1110, British Virgin
Islands

Tel : +33 (0)4 42 370 370

Fax : +33 (0)4 42 370 024

Email: sales@Seal SQ.com

Stay connected with @SealSQ

	Contacts
	Disclaimer
	References
	Acronyms and abbreviations
	Conclusion and key takeaways
	Building a secure connection to an IoT Cloud
	Secure Provisioning of the Secure Element
	Secure Cloud connection
	Solution architecture reference

	Seal SQ secure device-to-cloud solution
	Key components
	Public Key Cryptography
	Root of Trust (Certificate Authority)
	Digital Identity
	CMS (Certificate Management System)
	VaultIC Secure Elements

	Threats and vulnerabilities of IoT
	Introduction
	About SEAL SQ

